Search results

Search for "beam induced processing" in Full Text gives 13 result(s) in Beilstein Journal of Nanotechnology.

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • ; FEBIP; side wall angle; Introduction Focused electron beam-induced processing (FEBIP) is a technique in which a focused electron beam is directed onto a substrate with an adsorbed layer of precursor molecules. The precursor molecules are supplied from a gas injection system through a nozzle at close
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • electron beam-induced processing is a versatile method for the fabrication of metallic nanostructures with arbitrary shape, in particular, on top of two-dimensional (2D) organic materials, such as self-assembled monolayers (SAMs). Two methods, namely electron beam-induced deposition (EBID) and electron
  • agent need to be considered and further studied. Keywords: 2D materials; carbon nanomembranes (CNMs); focused electron beam-induced processing; metallic nanostructures; self-assembled monolayers; Introduction Focused electron beam-induced processing (FEBIP) is a powerful maskless “direct-write
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • in Figure 10. EBID is a technique with a potentially higher spatial resolution than conventional resist-based EBL. The next section briefly reviews EBID and its counterpart electron beam induced etching (EBIE). The generic term for both techniques is focused electron beam induced processing (FEBIP
  • ). 2.2.2 Focused electron beam induced processing. Focused electron beam induced processing (FEBIP) is a high-resolution direct-write nanopatterning method comprising two complementary techniques, namely electron beam induced deposition (EBID) and etching (EBIE). The advantages of FEBIP lie not only in the
PDF
Album
Review
Published 14 Nov 2018

Chemistry for electron-induced nanofabrication

  • Petra Swiderek,
  • Hubertus Marbach and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2018, 9, 1317–1320, doi:10.3762/bjnano.9.124

Graphical Abstract
  • -induced chemistry of volatile precursor molecules is central to a novel class of gas-assisted nanolithographic techniques, subsumed as focused electron beam induced processing (FEBIP) [1][2]. FEBIP has emerged with the availability of extremely narrow focused electron beams in electron microscopy. These
PDF
Editorial
Published 30 Apr 2018

The rational design of a Au(I) precursor for focused electron beam induced deposition

  • Ali Marashdeh,
  • Thiadrik Tiesma,
  • Niels J. C. van Velzen,
  • Sjoerd Harder,
  • Remco W. A. Havenith,
  • Jeff T. M. De Hosson and
  • Willem F. van Dorp

Beilstein J. Nanotechnol. 2017, 8, 2753–2765, doi:10.3762/bjnano.8.274

Graphical Abstract
  • , University of Ghent, B-9000 Ghent, Belgium Uniresearch B.V., 2628 XG Delft, Netherlands 10.3762/bjnano.8.274 Abstract Au(I) complexes are studied as precursors for focused electron beam induced processing (FEBIP). FEBIP is an advanced direct-write technique for nanometer-scale chemical synthesis. The
  • interactions, making it volatile. It is stable enough to act as a volatile source for Au deposition, being stabilized by 6.5 kcal/mol. Finally, MeAuCO is likely to dissociate in a single step to pure Au. Keywords: crystallography; focused electron beam induced processing; gold chemistry; precursor design
  • ; Introduction Electron microscopes, typically used for imaging and analysis, can be turned into a platform for nanoscale chemical synthesis using electron beam induced chemistry. The electron beam can act as a pen or an eraser on any solid sample, using a technique called focused electron beam induced
PDF
Album
Full Research Paper
Published 20 Dec 2017

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

  • Fan Tu,
  • Martin Drost,
  • Imre Szenti,
  • Janos Kiss,
  • Zoltan Kónya and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2017, 8, 2592–2605, doi:10.3762/bjnano.8.260

Graphical Abstract
  • ; electron beam induced deposition; focused electron beam induced processing; iron pentacarbonyl; nanofabrication; Introduction Carbon nanotubes (CNTs) have attracted enormous interest due to their potential as functional building blocks in applications such as molecular electronics, sensors and energy
  • metallic templates for the localized growth of CNTs. However, all of these methods are lacking in either the final desired resolution or in flexibility of the targeted shapes. Therefore, we explore focused electron beam induced processing (FEBIP)-based techniques for the controlled and localized
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • : additive manufacturing; beam induced processing; 3D printing; direct-write; electron beam induced deposition; microscopy; nanofabrication; pulsed laser; purification; rapid prototyping; Introduction The first fully incorporated 3D transistor logic was reported in 2012 [1]. Further 3D device concepts and
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

Focused particle beam-induced processing

  • Michael Huth and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1883–1885, doi:10.3762/bjnano.6.191

Graphical Abstract
  • the gold surface. A novel route towards focused particle beam-induced processing (FPBIP) with HIM is paved by Xianghui Zhang and coworkers [16]. They used focused helium ions to perform the controlled modification of materials in monomolecular organic films. Here, ion exposure induced 2D
  • with focused charged particles. The idea for this Thematic Series arose in conjunction with the 5th International Workshop on Focused Electron Beam Induced Processing (FEBIP2014) held at the Physics Department of the Goethe University in Frankfurt am Main in July 2014, which brought together renowned
PDF
Editorial
Published 09 Sep 2015

Continuum models of focused electron beam induced processing

  • Milos Toth,
  • Charlene Lobo,
  • Vinzenz Friedli,
  • Aleksandra Szkudlarek and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1518–1540, doi:10.3762/bjnano.6.157

Graphical Abstract
  • of Materials and Nanostructures, Feuerwerkerstrasse 39, 3602 Thun, Switzerland AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland 10.3762/bjnano.6.157 Abstract Focused electron beam induced processing (FEBIP) is a
  • continuum FEBIP models. Keywords: continuum model; deposition; electron beam processing; etching; gas injection system; Review Introduction to continuum models of focused electron beam induced processing (FEBIP) Continuum FEBIP models enable the simulation of process rates that govern focused electron
PDF
Album
Review
Published 14 Jul 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention. Keywords: beam induced processing; direct-write; electron beam induced deposition; nano; Introduction Focused electron beam induced deposition (FEBID) is an attractive nanotechnology
PDF
Album
Full Research Paper
Published 08 Apr 2015

Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

  • Florian Vollnhals,
  • Martin Drost,
  • Fan Tu,
  • Esther Carrasco,
  • Andreas Späth,
  • Rainer H. Fink,
  • Hans-Peter Steinrück and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2014, 5, 1175–1185, doi:10.3762/bjnano.5.129

Graphical Abstract
  • deposition; nanofabrication; scanning transmission X-ray microscopy; Introduction The fabrication of nanostructures by using focused electron-beam induced processing (FEBIP) techniques, especially electron-beam induced deposition (EBID), has progressed considerably over the last decade [1][2][3][4][5]. In
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2014

The role of electron-stimulated desorption in focused electron beam induced deposition

  • Willem F. van Dorp,
  • Thomas W. Hansen,
  • Jakob B. Wagner and
  • Jeff T. M. De Hosson

Beilstein J. Nanotechnol. 2013, 4, 474–480, doi:10.3762/bjnano.4.56

Graphical Abstract
  • , Denmark 10.3762/bjnano.4.56 Abstract We present the results of our study about the deposition rate of focused electron beam induced processing (FEBIP) as a function of the substrate temperature with the substrate being an electron-transparent amorphous carbon membrane. When W(CO)6 is used as a precursor
  • desorption. Keywords: desorption energy; focused electron beam induced processing; scanning transmission electron microscopy; temperature dependence; tungsten hexacarbonyl; Introduction When the electron beam in an electron microscope is focused on a sample in the presence of a precursor gas, it can be
  • used to locally modify the sample. This process has gained increasing interest over the past ten years and is named focused electron beam induced processing (FEBIP) [1][2][3]. The molecules from the precursor gas (transiently) adsorb on the sample surface and dissociate into fragments when they are
PDF
Album
Full Research Paper
Published 14 Aug 2013

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
  • beam induced processing (FEBIP), the most comprehensive of which is the excellent article by Utke, Hoffmann and Melngailis [6]. These reviews mainly cover the principles of gas-assisted deposition and etching with electrons, provide a summary of modeling approaches to FEBIP, and give some details of
PDF
Album
Video
Review
Published 29 Aug 2012
Other Beilstein-Institut Open Science Activities